US009231949B1

a2z United States Patent (10) Patent No.: US 9,231,949 B1
Jenkins et al. 45) Date of Patent: Jan. 5, 2016
(54) CONTENT DELIVERY TO USER DEVICES 2003/0182576 Al* 9/2003 Morlang HO4L 63/0428
USING SERVER-INITIATED CONNECTIONS 713171
2003/0188193 Al* 10/2003 Venkataramappa
(75) Inventors: Jonathan A. Jenkins, Seattle, WA (US); e HO4L 6%06%(5)
Peter F. Hill, Seattle, WA (US); Brett R. 2005/0108517 Al* 5/2005 Dillonctal. 713/150
Taylor, Bainbridge Island, WA (US) 2010/0058064 Al* 3/2010 Kirovskietal. 713/176
2010/0218248 Al* 82010 Nice ...coevveenn HOA4L 63/0272
(73) Assignee: Amazon Technologies, Inc., Seattle, WA) 726/12
Us 2011/0029670 Al* 2/2011 Kleincccoeveenee. HO04W 4/02
Us) 709/225
2012/0144019 Al* 6/2012 Zhuccccovvvvevene. HOAL 67/141
(*) Notice: Subject to any disclaimer, the term of this N 709/224
patent is extended or adjusted under 35 2012/0317243 Al* 12/2012 Gao .ccooveveecrneinnnn HO4H 20/95
U.S.C. 154(b) by 212 days. 709/219
2013/0145151 Al* 6/2013 Brownetal. 713/156
(22) Filed: Aug. 10,2012 Barford et al., Generating Representative Web Workloads for Net-
work and Server Performance Evaluation, 1998, pp. 151-160.*
(51) Imt.ClL
GO6F 15/16 (2006.01) * cited by examiner
HO4L 29/06 (2006.01)
(52) US.CL Primary Examiner — Farid Homayounmehr
v Y
C.PC e HO4L 63/10 (2013.01) Assistant Examiner — Lizbeth Torres-Diaz
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson &
CPC HO4L 29/06; HO4L 63/0823; HO4L 67/42; Bear. LLP
HO4L 67/32; HO4L 63/0807;, HO4L 65/4084; ’
HO04L 29/0809; HO4L 69/16; HO4L 67/125; (57) ABSTRACT
HO04L 63/10 . . .
USPC oo 726/4, 21; 709/227, 203, 230 Features are disclosed for enabling servers to initiate the
See application file for complete search history. opening of connecthns Wth chent.s, 1n1.t1ate transf.ers of d.ata
to clients, and provide clients with hints regarding which
(56) References Cited content retrieval, connection establishment, and other net-

U.S. PATENT DOCUMENTS

work operations will likely improve user-perceived perfor-
mance on the client. A token may be transmitted from a client
to a server, and the server may utilize the token to initiate a
network connection with the client and send data to the client.
The token may also be passed to a third party for similar use.
Hints may be provided to the client, indicating actions that the
client may perform in order to improve content processing
efficiency and enhance a user experience with the content.
The disclosed features may, for example, be incorporated into
web browser and server software.

28 Claims, 8 Drawing Sheets

(1) CLIENT ESTABLISHES CONNECTION, REQUESTS FILE, AND PASSES TOKEN

(2) SERVER SENDS REQUESTED FILE

104 (3) SERVER REQUESTS ESTABLISHMENT OF 102
SECOND CONNECTION AND PASSES TOKEN

CONTENT

5,951,694 A * 9/1999 Choquieretal. . .. 714/15
6,226,750 B1* 5/2001 Triegerccoevvvinn. 726/3
6,606,645 B1* 8/2003 Cohenetal. 709/203
6,981,278 B1* 12/2005 Minnig HO4L 29/12367
709/245
7,010,578 B1* 3/2006 Lewin GOG6F 17/30905
707/E17.121
7,248,861 B2* 7/2007 Lazaridis G06Q 30/00
455/412.1
8,095,679 B1* 1/2012 Satish GO6F 9/44521
709/213
CLIENT | o
4 DEVICE

) CLIENT

VALIDATES

TOKEN AND

ESTABLISHES
CONNECTION

(5) SERVER SENDS FILE OVER SECOND
CONNECTION BEFORE IT 1S REQUESTED BY

SERVER

CLIENT

US 9,231,949 B1

Sheet 1 of 8

Jan. 5, 2016

U.S. Patent

I 51
orL
wwa Nwﬂ\,_ h
IJMMAONW TJINAON
SISXATVNY TOFINOD I0INTA
INIH NIDIOL INITTD
ATSMONUI

T

orr

N1

ol
J

9Z1 [£44 J 71 J

NOILJDINNOD

AOIVIINID FIMAONW
- INTH NOILLVLLINI

HIAYIS INTLINOD

-

791

91
J

JINAaonw
NOILVLLINI
NOLLJINNOD

HIAYIS ALAVd AAE

US 9,231,949 B1

Sheet 2 of 8

Jan. 5, 2016

U.S. Patent

HIAYAS
INTINOD

01

Z 51

Y

ANITIO
A4 @11SIN0OTY SI.LI T10JT9 NOLLDINNOD
ANODJIS ¥IAO TTId SANATS AIAFIS (9)

NOLLJINNGD
SIHSI'IAV.LSd
ANV NDIOL
SILVAI'TVA
INAII %)

NDIOL §355Vd ANV NOLLDINNOD ANODIS
40 INTWHSTTAV.IST SISTNOIN dIAYAS (€)

(@

T AIISINOTY SANTS YIS (T)

421A3d
ANAIIO

! SRR
LY

L J]

- rl

e L

POL

NIIOL SISSV ANV ‘AT SISTNOTY ‘NOILIANNOD STHSITIVISI INIITO (1)

US 9,231,949 B1

Sheet 3 of 8

Jan. 5, 2016

U.S. Patent

adrsinoad s1.11 390439 AT1d SANTS YTIAYAS ALIVd AITHL (9)

HIAIIS
ALAVd-TATHL

9L

A

qIAYIS ALYV

Y OL NPIOL

SANIS AFAUIS
©

HIAAIS
INIINOD

a0l

NIDIOL 535SVd ANV NOLLDINNOO
MAIN SISTNOTT YIAYIS XALAVd TITHL (F)

£ S

NOILLJINNOD
STHSITAVISd
ANV NIAOL
SALVAI'TVA
INATTI (5)

A01A3A
INIIIO

15118

AT A115IN0OTI SANIS YIAUAS (T

NINOL SASSVd ANV ‘TTH SISTINTI ‘NOLLIANNOD STHSITAVIST INAITD (T)

U.S. Patent

Jan. 5§, 2016 Sheet 4 of 8

402 \{

START CONNECTION
INITIATION PROCESS

A4

US 9,231,949 B1

400

404 ~_) RECEIVE REQUEST WITH TOKEN
A4
406 ~_| DETERMINE FILE(S) TO PUSH } — -
|
|
A 4 .
208 SEND TOKEN AND '
TN REQUEST CONNECTION L s
________ Y ____D__
SEND TOKEN TO |
THIRD PARTY SERVER |
410
__CONNECTIO
NO OPENED
?
412 ~_ REQUEST FILE INFO
414
NEWER
: FILES) »
NO AVAILABLE#
YES
416
T PUSH FILE(S)
4 ,),\/ 420
END
A

Fig. 4

U.S. Patent Jan. 5,2016

Sheet 5 of 8

502 START PROCESS TO GENERATE
REQUEST WITH TOKEN

US 9,231,949 B1

A 4 /
504_ TRANSMIT REQUEST W/ TOKEN
Y
506_| RECETVE REQUEST TO
OPEN CONNECTION
522
—
END)
510 OPEN CONNECTION
512
™ \ 4
»| WAIT FOR CONNECTION ACTIVITY |«

RECEIVE

FILE
?

RECEIVE
REQUEST
FOR FILE

?

YES

520 ~ RESPOND WITH FILE INFORMATION

Y

PROCESS FILE

~ 516

Fig. 5

US 9,231,949 B1

Sheet 6 of 8

Jan. 5, 2016

U.S. Patent

9 31

T4 INIH NI dILVIIANI SV STTI4 SISANOTH ANV
HIAAIS ALIVd AE OL SNOLLDINNOD SNAdO LNAI'ID
)

YIAYIS
ALNVd a¥E
901 ..
! SRR
IIIATA y
INTITD i
POl | 9917 INIH
$I5SID0Ud
T4 INIH NI GLLVOIANI SV STTI SISINOTH INTITO

JO/ANV SNOLLDINNOD SNIJO INATTD

AIAYIS ©)
INAINOD

4114

4,

INIITD OL T4 INTH SANIS ¥IA YIS (D)

U.S. Patent

702 \/GTART HINT GENERATION PROCESS

Jan. 5, 2016

Sheet 7 of 8

A 4

RECEIVE REQUEST

CLIENT

US 9,231,949 B1

700

ACCEPTS

?

NO

08 ANALYZE CLIENT
T CHARACTERISTICS
A 4
710 ~_J DETERMINE HINTS
Y
712 r\,l OPEN CONNECTION
714 ~_| TRANSMIT HINTS

Fig. 7

U.S. Patent

Jan. 5§, 2016 Sheet 8 of 8

802 ’\/(START HINT ANALYSIS PROCESS)

h 4

TRANSMIT REQUEST WITH

"""""

804 ™~ CLIENT CHARACTERISTICS
A 4
806 ~_| RECEIVE AND ANALYZE HINTS
A 4
808 ~_J OPEN CONNECTIONS
A 4
810 ~_| REQUEST FILES
A 4
412~ TRANSMIT FEEDBACK
A 4

Fig. 8

US 9,231,949 B1

800

.

US 9,231,949 B1

1
CONTENT DELIVERY TO USER DEVICES
USING SERVER-INITIATED CONNECTIONS

BACKGROUND

In a network communication environment, such as the
Internet, a client computing device (client) may utilize a
software browser application to initiate network connections
with server computing devices (servers), and subsequently
request content from those servers. Servers may respond to
client requests for content, but in typical Hypertext Transfer
Protocol (HTTP) based communications, servers do not ini-
tiate transfers of content to clients. A request from the client
is typically required in order to initiate any transfer of data
from the server to the client. Other protocols, such as SPDY,
enable a server to initiate a data transfer to a client over a
connection initiated by the client device.

Servers may provide indications to clients regarding which
network resources to retrieve to improve the performance of
future content requests and processing. Such predicted or
anticipatory retrieval, also known as prefetching, may be
implemented through use of a prefetch hint embedded within
a Hypertext Markup Language (HTML) file. In a typical
implementation, servers can determine which content a client
is likely to request next, and include a prefetch hint identify-
ing which linked content to proactively fetch. Clients receiv-
ing an HTML file with a prefetch hint may request the indi-
cated content before it is requested by a user.

BRIEF DESCRIPTION OF DRAWINGS

Throughout the drawings, reference numbers may be re-
used to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
embodiments described herein and are not intended to limit
the scope of the disclosure.

FIG. 1 is a block diagram of an illustrative content delivery
environment including a client device, a content server, and a
third party server.

FIG. 2 is a block diagram of illustrative communications
and data flows between a client device and a content server.

FIG. 3 is a block diagram of illustrative communications
and data flows between a client device, a content server, and
a third party server.

FIG. 4 is a flow diagram of an illustrative process for server
initiation of a connection using a token.

FIG. 5 is a flow diagram of an illustrative process for
transmitting a token to a server and receiving a request, from
the server, to open a connection.

FIG. 6 is a block diagram of illustrative communications
and data flows between a client device, a content server, and
a third party server.

FIG. 7 is a flow diagram of an illustrative process for
generation and transmission of hints to a client device.

FIG. 8 is a flow diagram of an illustrative process for
receipt and process of a hint file from a content server.

DETAILED DESCRIPTION

Introduction

The present disclosure is directed to, among other features,
enabling servers to initiate the opening of connections with
clients and to initiate the transfer of data to clients. Also
disclosed are features for enabling a server to provide clients
with hints regarding which content retrieval, connection
establishment, and other network operations will likely
improve perceived performance on the client. The various

10

15

20

25

30

35

40

45

50

55

60

65

2

features may, for example, be used to improve user-perceived
performance in environments in which content is requested
and transferred using the HT'TP protocol.

Some embodiments involve the transmission of a token
from a client to a server. The server may subsequently utilize
the token to initiate additional network connections with the
client, passing the token (or data derived from it) back to the
client to authenticate the server to the client. A client, upon
receipt of a request to establish a connection, can verify that
the token is valid prior to establishing the requested connec-
tion. Once a connection is established, a server may transmit
content or other data to the client without requiring a request
first. Additional aspects of the disclosure relate to use of the
token by third party servers, received from a server to which
a client originally transmitted the token, to establish connec-
tions with the client device in a similar manner.

Further aspects of the disclosure relate to providing hints to
a client which the client may use to improve user-perceived
performance with respect to a current or future request. The
hints may indicate a number of connections to be established,
which entities to establish the connections with, and/or which
content to retrieve. A client may utilize the hints to retrieve
content prior to determining that the content is needed or
desired. For example, a hint file may be provided that lists
which resources to retrieve and in which order to retrieve
them. The hints may be determined dynamically by the
server, in some cases in response to feedback or initial indi-
cations received from a client. The feedback or initial indica-
tions may relate to network characteristics such as bandwidth,
screen display size or resolution, etc.

Although aspects of the embodiments described in this
disclosure will focus, for the purpose of illustration, on rela-
tionships and interactions between client devices and content
servers, one skilled in the art will appreciate that the tech-
niques disclosed herein may be applied to any number of
hardware or software processes or applications. Further,
although various aspects of the disclosure will be described
with regard to illustrative examples and embodiments, one
skilled in the art will appreciate that the disclosed embodi-
ments and examples should not be construed as limiting.
Various aspects of the disclosure will now be described with
regard to certain examples and embodiments, which are
intended to illustrate but not limit the disclosure.

With reference to an illustrative embodiment, a user of a
client device may launch a web browser application and sub-
mit a request to a server. The request may be for a web page
or some other network-accessible resource. The web browser
may transmit the request according to a standard protocol,
such as Hypertext Transfer Protocol (HTTP). The web
browser may also include a token, such as an encrypted iden-
tifier of the client device, in the HTTP request. The token may
be transmitted to the server in order to authenticate future
communication from the server. For example, if a server were
to attempt to open a connection with a client device, the client
device may ignore such a request according to standard secu-
rity practices. However, if the server were to include the token
that the client itself transmitted to the server, then the client
may determine based on the token and other information
aboutthe server (e.g. IP address) that the server is known, that
opening the connection may be desirable, and further that
opening a connection with the server is safe.

In some cases, the server may utilize the connection to
transmit content and data that the server knows or predicts the
client will need, but which the client does not yet know it
needs or has not yet requested it. For example, the server may
be a web server configured to host content pages and transmit
the content pages and resources embedded within the content

US 9,231,949 B1

3

pages in response to requests from client devices. If a client
device requests a web page, the server hosting the page can
determine that the client will need the embedded resources in
order to fully render the web page, even though the client has
not yet received a Hypertext Markup Language (HTML) file
corresponding to the requested page that indicates which
embedded objects to retrieve next. By establishing a second
connection with the client, the server may begin to transmit
the embedded resources to the client in parallel with the
HTML file, in a prioritized sequence, etc.

Some embedded resources may not be hosted by the server.
For example, the web pages hosted by the server may refer-
ence several objects which are hosted by a third-party server,
such as a content delivery network (CDN) server. In such
cases, the server may transmit a copy of the token to the CDN
server or other third-party server. The third-party server may
then utilize the token to request establishment of a connection
with the client device. The client device may process the
token to determine that it is authentic (e.g., decrypt the token
to obtain an identifier, and verify that the client generated the
identifier and therefore the token). If the token is authentic
and the client device is configured to accept connections from
third party servers, the client may accept the request, establish
the connection, and begin to receive files via the newly estab-
lished connection at the initiation of the third-party server.

The client device may already have content present that the
server or third party server attempts to transmit. For example,
browser applications commonly have local caches, and con-
tent previously requested and received by the client device
may be present in the cache. Transmission of redundant con-
tent may impact network performance and reduce, eliminate,
or even counteract any benefit otherwise realized by allowing
servers to establish connections and proactively transmit con-
tent. Accordingly, the server may submit a request to the
client device to determine whether a specific content item is
present in a local cache and, if so, to determine the last edit
date associated with the content item. The server may analyze
the response and, if it determines that the version cached on
the client is current, then the server may proceed with
attempting to transmit other content items according to a
similar process.

A server may also transmit hints or other instructions to a
client device. Using the procedure described above and else-
where herein, the server may establish a connection with the
client device. Rather than directly transmit content to the
client device to enhance performance of a given content page,
the server may instead transmit a file or stream of data to the
client that the client may use to request various content files
and other objects. In a typical environment, the client may
request the HTML file corresponding to a desired web page.
The HTML file includes embedded references to other
resources, and as the browser application of the client device
processes the HTML file and encounters an embedded refer-
ence, the browser application requests the corresponding
resource. The server may determine an effective prioritization
for retrieval of resources associated with the content page
hosted by the server, and transmit a hint file to the client
device when the client device requests an HTML file. The hint
file may indicate which embedded resources the client device
will request in order to fully retrieve the web page, which
servers (e.g.: third party servers) the embedded resources are
to be retrieved from, in what order to retrieve the resources,
etc. Accordingly, the client device may analyze the hint file
and begin to retrieve resources necessary or desirable for
complete display of a web page before the client device fully
receives and process the HTML file which references the
resources.

10

15

20

25

30

35

40

45

50

55

60

65

4

The hint file may also be used to customize a response for
a given client. For example, a client device may be associated
with a network that has certain characteristics (e.g.: band-
width, latency), a display with certain characteristics (e.g.:
size, resolution). The client may disclose information regard-
ing these characteristics to the server, or the server may detect
them. The server may transmit a hint file indicating that
specific versions of resources are to be retrieved or specific
host servers are to be contacted in order to retrieve content
associated with the page that may be targeted specifically for
the characteristics of a user device. For example, the client
device may be a mobile phone with a small display and
limited network bandwidth. The server may, through the use
of a hint file, inform the mobile phone of low resolution
images to retrieve for display instead of the high quality
images typically displayed on a page hosted by the server.
Network Computing Environment

Turning now to FIG. 1, an illustrative network computing
environment in which the features described above may be
implemented will be described. The network computing envi-
ronment 100 may include a content server 102, a client device
104, and a third party server 106. The various systems may
communicate with each other via a communication network
110. The network 110 may be a publicly accessible network
of linked networks, possibly operated by various distinct
parties, such as the Internet. In other embodiments, the net-
work 110 may include a private network, personal area net-
work, local area network, wide area network, cable network,
satellite network, cellular telephone network, etc. or combi-
nation thereof, each with access to and/or from the Internet.

The content server 102 can correspond to a logical asso-
ciation of one or more computing devices for hosting content
and servicing requests for the hosted content over the network
110. For example, the content server 102 may include a web
server, an application server, a proxy server, or some other
device or group of devices that provide content to requesting
client devices 104. Illustratively, the content server 102 of
FIG. 1 includes a number of components to implement server-
initiated connections and hint file generation, such as a con-
nection establishment component 122, a hint generator 124,
and a content data store 126.

A connection establishment component 122 may be con-
figured to establish connections with client devices 104. The
connection establishment component 122 may be imple-
mented as a hardware component of the content server or as a
combination of hardware and software executing on the hard-
ware. A hint generator 124 may be configured to generate hint
files and streams in response to content requests and other
communications to or from client devices 104. The hint gen-
erator 124 may be implemented as a hardware component of
the content server or as a combination of hardware and soft-
ware executing on the hardware, similar to the connection
establishment component 122. A content data store 126 may
be configured to store records, files, and other objects corre-
sponding to content hosted by the content server 102. The
content data store 126 may correspond to a file system, a
relational database, or some other electronic data store. In
some embodiments, the content server 102 may include addi-
tional or fewer components than illustrated in FIG. 1. For
example, the content server may not include a hint generator
124, or may include, or it may include or otherwise be asso-
ciated with various additional computing resources, such as
content delivery network (CDN) systems, domain name sys-
tem (DSN) servers, and the like.

The client device 104 may correspond to a wide variety of
computing devices, including personal computing devices,
laptop computing devices, hand held computing devices, ter-

US 9,231,949 B1

5

minal computing devices, mobile devices (e.g., mobile
phones, tablet computing devices, etc.), wireless devices,
electronic readers, media players, and various other elec-
tronic devices and appliances. A client device 104 may be
configured with a browser application 140 to communicate
via the network 110 with other computing systems, such the
content server 102 or third party server 106, and to request,
receive, process, and display content. The browser 140 may
include a token control module 142 and a hint analysis mod-
ule 144. The token control module 142 may be configured to
generate and transmit tokens to the content server 102, and to
authenticate tokens received from the content server 102,
third party server 106, or some other device in response to a
request to establish a connection. The hint analysis module
144 may be configured to receive and analyze hint files and
other hint data from a content server 102, and to initiate
various actions based on the hints.

The third party server 106 can correspond to a logical
association of one or more computing devices for hosting
content and servicing requests for the hosted content over the
network 110. For example, the third party server 106 can
include a web server component corresponding to one or
more server computing devices for obtaining and processing
requests for content (such as content pages) from the client
device 104. In some embodiments, one or more content pro-
viders 106 may be associated with a CDN service provider, an
application service provider, etc. The third party server 106
may include a connection establishment component 162 and
a content data store 166, similar to the content server 102.
Server Initiated Connections

FIGS. 2-5 illustrate data flows and processes for imple-
menting various features related to server-initiated connec-
tions and the use of tokens. With reference to FIG. 2, a client
device 104 may establish a connection at (1) to a content
server 102. The connection may be a Transmission Control
Protocol/Internet Protocol (TCP/IP) connection, as is com-
monly used in network computing environments such as the
internet. The client device 104 may communicate with the
content server 102 by sending an HTTP request, or by utiliz-
ing some other communication protocol, such as SPDY, to
send a request. For example, the client device may 104 trans-
mit an HTTP GET request. In order to facilitate authentica-
tion of the content server 102 in the future, such as when the
content server 102 attempts to establish a connection with the
client device 104, the token control module 142 may be used
to generate a token for transmission to the content server 102.
A token generated by the token control module 142 may be
transmitted in an HTTP header or as part of a separate trans-
mission.

An HTTP GET request typically includes data regarding
the identity of the host, which corresponds to the content
server 102 in this case, the identity of the requested file, which
may correspond to the landing page of a web site, and infor-
mation about the client device 104. The information about the
client device 104 can include the User-Agent HTTP header,
which specifies, among other things, the name and version of
the browser that the client device 104 is using to make the
request. In some embodiments, a custom HTTP header may
be included with the request, such as a Connection-Token
HTTP header. The custom header may be added to some or all
requests generated by the client device 104. Because the
header is a custom header, a content server 102 may not be
able to identify the token and use it if the content server 102
is not specifically configured to do so. Content servers 102
that do not support the custom header may ignore it. In some
embodiments, the token control module 142 may utilize an
existing HTTP header to transmit the token. Further embodi-

10

15

20

25

30

35

40

45

50

55

60

65

6

ments may not involve use of any HTTP header, and may
utilize different protocols such as SPDY.

In response to receiving a request, such as the illustrative
HTTP GET request described above, a content server 102
may respond with the requested file at (2). If the content
server 102 is configured to receive the custom HTTP header
that contains the token, the content server 102 may initiate a
process for determining whether establishing a second con-
nection with the client device 104 is desirable. For example,
the content server 102 may determine that opening an addi-
tional connection to the client device 104 and sending files
over the new connection will improve the performance and
user experience on the client device 104. Accordingly, the
content server 102 may pass the token, or data derived from
the token (e.g.: data generated by a challenge-response algo-
rithm), back to the client device 104 and request that a new
connection be opened at (3). The sequence of events may, in
some embodiments, be reversed. For example, a content
server 102 may request establishment of a new connection
prior to responding with the originally requested content. In
further embodiments, the response to the client device 104
request and the request to the client device 104 to open a
connection may be performed substantially in parallel.

The client device 104 can analyze the token at (4) and
determine whether the token is valid. For example, the client
device 104 may create tokens from randomly generated data,
content server 102 identification data, client device 104 iden-
tification data, or any other data to which the client device 104
has access. In some cases, the token may be created with a
time stamp to implement expiration. The data may be
encrypted such that a content server 102 or some third party
does not have access to the data contained therein and cannot
tamper with the token or generate fraudulent tokens. The
client device 104 may also record which tokens have been
created. Upon receipt of a token, the client device 104 can
determine whether the token is valid by decrypting the data,
checking the record of which tokens have been created, and
other operations depending on the method originally used to
generate the token. In some embodiments, the content server
102 may modify the token according to some previously
determined or approved method prior to passing it back. For
example, the content server 102 may digitally sign the token
with a private key and transmit the digitally signed token and
the original token back to the client device 104 for authenti-
cation. Such modifications to the token may be used to verify
the identity of the content server 102 or otherwise enhance the
trust that a client device 104 has in the validity of the token.

If the client device 104 determines that the token is valid,
the client device 104 may accept or otherwise establish the
connection with the content server 102. Thereafter, the con-
tent server 102 may use the newly opened connection at (5) to
transmit files or other data to the client device 104 at the
content server’s 102 initiative (e.g.: without receiving a
request for a file or data).

Turning now to FIG. 3, illustrative interactions and data
flows to allow a third party server 106 to establish a connec-
tion with the client device 104 will be described. The client
device 104 may establish a connection, request a file, or
transmit some other communication, and also pass a token to
a content server 102 at (1), similar to the request described
above with respect to FIG. 2. The content server 102 may
respond at (2) by transmitted the requested file to the client
device 104.

The content server 102 may, instead of or in addition to
requesting a new connection with the client device 104, trans-
mit the token or some data derived from or otherwise based on
the token to a third party server 106 at (3). For example, if the

US 9,231,949 B1

7

content server 102 determines that certain files are going to be
needed in order for a client device 104 to fully receive a web
page, and that one or more of those files are hosted by a third
party server 106, the content server 102 may send the token to
the third party server 106. In some embodiments, the content
server 102 may send additional data to the third party server
106, such as the IP address of the client device 104, and the
name of a file that should be sent to the client device 104. The
third party server 106 may then contact the client device 104
using the supplied IP address or some other method of iden-
tifying or addressing the client device 104, and request that a
connection be opened at (4). The third party server 106 may
transmit the token received from the content server 102, or
some data derived from or otherwise based on the token, to
the client device 104.

The client device 104 may validate the token at (5), as
described above with respect to FIG. 3. In some embodi-
ments, additional validation may be performed due to the
third party nature of the third party server 106. For security
reasons, the client device 104 may have a list of third parties
that it will accept connections from, and may deny connection
requests from all other third parties even if they present an
otherwise valid token. The client device 104 may also contact
the original recipient of the token—content server 102 in this
example—in order to verify that the token was intended to be
passed to a third party server 106.

Upon validating the token, the client device 104 may open
the connection with the third party server 106. The third party
server 106 may then use the newly opened connection to
transmit files or other data to the client device 104 at (6) at the
initiative of the third party server 106, similar to the transmis-
sion from a content server 102 to the client device 104
described above with respect to FIG. 2. A file may be trans-
mitted to the client device 104 prior to receiving a request
from the client device 104 for the file.

Turning now to FIG. 4, an illustrative process 400 for
enabling server-initiated connections to a client device 104
will be described. The process 400 may be executed by a
connection initiation module 122, 162 or some other module
or component of the content server 102 or third party server
106. The content server 102 may receive a request, from a
client device 104, for content hosted by the content server
102, such as content in the content data store 126. In addition
to responding to the request, the content server 102 may
discover that a token has been received in a HT'TP header or
via some other method. The content server 102 may also
determine that the client device 104 accepts incoming con-
nections, for example by detecting which browser the client
device 104 is using as indicated in the User-Agent HTTP
header. Upon determining that opening an additional connec-
tion is desirable, the connection initiation module 122 may
transmit a request to the client device 104 to open a connec-
tion. Advantageously, once a connection is opened in this
manner the content server 102 may initiate transfer of content
files and other data to the client device 104 without requiring
a request from the client device 104 to do so.

The process 400 begins at block 402. The process 400 may
be embodied in a set of executable program instructions and
stored on a computer-readable medium drive of a content
server 102 or some other computing system with which the
content server 102 is associated. When the process 400 is
initiated, the executable program instructions can be loaded
into memory, such as RAM, and executed by one or more
processors of the computing system. In some embodiments,
the computing system may include multiple computing
devices, such as servers, and the process 400 may be executed
by multiple servers, serially or in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

8

Atblock 404, the content server 102 may receive a request,
with a token, from a client device 104. In addition to respond-
ing to the request, the content server 102 may determine that
opening another connection with the client device 104 is
desirable.

The content server 102 may then, at block 406, determine
which files or other data to send to the client device 104 in the
event that the client device 104 accepts the request to open a
connection. For example, if the client device 104 has
requested a content page, such as a web page defined by an
HTML file, the content server 102 may prioritize the various
files corresponding to embedded references within the
HTML. file. The files may be prioritized by size, type, relative
importance (e.g.: images files to be displayed near top may be
more important than image files at the bottom), some combi-
nation thereof, or any number of other factors.

The content server 102 may determine that one or more
files to be transmitted to the client device 104 are hosted by or
otherwise associated with a third party server 106. In some
embodiments, the content server 102 may further determine
that the benefits of establishing additional connections sup-
port a decision to pass the token or some data derived from the
token to the third party server 106 at block 418. The content
server 102 can instruct or request that the third party server
106 to establish a connection with the client device 104 and
transmit the files that the content server 102 has determined
will be required.

Atblock 408, the content server 102 may send a request for
a new connection to the client device 104, and include the
token received at block 404. At decision block 410, if the
content server 102 receives a denial, from the client device
104, to open the connection, the process 400 may terminate at
block 420. If the client device 104 accepts the request and
establishes the connection, the content server 102 may begin
the process of transmitting files to the client device 104.

In some embodiments, the content server 102 may be con-
figured to determine whether the client device 104 has a copy
of a file prior to transmitting the file over the newly estab-
lished connection. For example, client devices 104 com-
monly implement local caches in which copies of previously
received content are stored. Future requests for the cached
content may be served out of the cache, thereby saving the
time and resources associated with retrieving the content
from a content server 102. The client device 104 may initiate
a brief communication with the content server 102 to deter-
mine whether the cached content is up-to-date by transmitting
an If-Modified-Since HTTP request. A content server 102
responds to the If-Modified-Since request with a brief mes-
sage if the content has not been modified in the time since the
client device 104 cached the copy. If the content has been
modified, the content server 102 may simply respond to the
If-Modified-Since request with the current version of the
content.

In the server-initiated connection process 400 of the
present example, the content server 102 may instead initiate a
brief communication with the client device 104 which is
effectively the reverse of the If-Modified-Since HTTP
request. For example, the content server 102 may request
information from a client device 104 regarding a file that may
or may not be stored in the cache of the client device 104 at
block 412, and analyze any response received from the client
device 104. The requested information may include a time
stamp from when the content was cached, and a checksum or
hash of the content to further determine whether the content
has changed. The content server 102 may then compare the
timestamps, or compute a hash or checksum to compare
against the received data.

US 9,231,949 B1

9

In some embodiments, the content server 102 may instead
send the client device 104 a timestamp from the time of the
lastupdate to the content, and a checksum or hash of the most
recent version. The client device 104 may then use the infor-
mation to determine whether the content has changed, and
transmit a request for the updated version to the content server
102.

At decision block 414, the content server 102 may deter-
mine whether there is a newer version of a file available. The
determination may be based on a comparison of data received
from the client device 104 to data regarding the current ver-
sion, as described above with respect to block 412. If afile has
been updated, the process 400 may proceed to block 416,
where the current version of the file is transmitted to the client
device 104. Otherwise, the process 400 may terminate at 420.

In some cases, the content server 102 may determine at
block 406 that multiple files are to be transmitted. In such
chases, the content server 102 may execute portions of the
process 400, optionally including blocks 412 and 414, for
each file to be transmitted, or only once for all files at sub-
stantially the same time.

Turning now to FIG. 5, an illustrative process 500 for
receiving requests for and establishing server-initiated con-
nections on client device 104 will be described. The process
500 may be executed by the browser 140 of the client device
104, and specific portions may be implemented by the token
control module 142. The token control module 142 can gen-
erate tokens for transmission to the content server 102, keep
a record of all transmitted tokens, and wvalidate tokens
received from the content server 102 or third party server 106
against those records. Advantageously, when a token is
received, the token control module 142 can determine not
only the authenticity of the token, but also whether the token
has expired in order to prevent unauthorized use of the token.

The process 500 begins at block 502. The process 500 may
begin automatically, such as in response to initiation, by a
user of the client device 104, of a request for a content object
from a content server 102. The process 500 may be embodied
in a set of executable program instructions and stored on a
computer-readable medium drive of the client device 104.
When the process 500 is initiated, the executable program
instructions can be loaded into memory, such as RAM, and
executed by one or more processors of the client device 104.

At block 504, the client device 104 may transmit a request
for a content page or other network accessible file, and
include a token in the request as described above. Data
regarding the token may be recorded by the token control
module 142 in order to determine later, when the token is
received with a request to open a connection, which entity the
token was transmitted to, at what time the transmission was
made, and the like. Alternatively or in addition, such data may
be embedded within the token.

The time at which the token was originally transmitted may
be used to determine whether the token has expired. For
example, a client device 104 may not accept tokens that are
more than 1 hour old, 1 minute old, or 1 second old. This may
be for security reasons (e.g.: to reduce the window of time in
which the token may be intercepted and used by a malicious
third party). Additionally, in some implementations the client
device 104 may wish to limit the content server 102 to using
the token for transmitting files associated with the request
with which the token was originally sent to the content server
102, rather than at a later time or at the discretion of the
content server 102.

At block 504, the client device 104 may receive a request,
from a content server 102 or a third party server 106, to open
a connection. At decision block 506, the token control module

10

15

20

25

30

35

40

45

50

55

60

65

10

142 may determine whether the token is valid. If the token is
not valid, the process may terminate at block 522. In some
embodiments, the client device 104 may transmit a notifica-
tion to the requesting entity if the token is expired or other-
wise invalid. If the token control module 142 determines that
the token is valid and has not expired, the process may pro-
ceed to open the connection at block 510 and wait for activity
over the connection at block 512.

Various network activities may occur over a network con-
nection initiated by a content server 102 (or third party server
106), including many or all of the actions, requests,
responses, and transmissions that occur over a connection
initiated by a client device 104. For example, the client device
104 may receive a file from the content server 102 at decision
block 514. If a file is received, the client device 104 may
process the file at block 516. Processing the file can include
storing the file in a cache so that when an embedded reference
to the file is encountered, the file may be retrieved from cache
without a request to the content server 102. In some embodi-
ments, processing may include displaying a file for pre-ren-
dering a file for later display. The process may then return to
block 512.

The client device 104 may also receive a request, over the
server-initiated connection, for information regarding a file
that may or may not be present on the client device 104. As
described above with respect to FIG. 4, the content server 102
may request information about a particular file prior to send-
ing the file in order to avoid consuming bandwidth and other
resources by sending a duplicate file. The request may
include, for example, information about the current version of
the file as hosted by the content server 102, and the client
device 104 may then determine whether the local version is
the current version. Alternatively, the request may cause the
client device 104 to provide information about the local ver-
sion to the content server 102. At block 520, the client device
104 can provide the requested information. The process may
then return to block 512.

The client device 104 may wait for connection activity at
block 512 for a predetermined amount of time, until the
connection is closed by the content server 102, until a user of
the client device 104 causes the browser 140 to navigate to a
different domain, or until the occurrence or nonoccurrence of
some other event.

Generation and Usage of Hints

FIGS. 6-8 illustrate data flows and processes for imple-
menting various features related to the creation and usage of
hints and hint files. As described above, a content server 102
is in a position to know which files are necessary to response
to content requests, because the content server 102 hosts the
content and has a greater knowledge of its structure and
dependencies than a client device 104 may have about the
content. Hints may be created by content servers 102 in order
to provide client devices 104 with additional information
about how to efficiently retrieve and process content associ-
ated with the content server 102. For example, a content
server 102 may provide a prioritized list of files to fetch before
the client device 104 knows that it will need the files. In
another example, the hint file may include a list of domains
and an indication that the client device 104 should resolve the
domains or open a number of connections to the domains so
that the connections are ready when the client device 104
needs to access a file from one of the domains. In a further
example, the hint file may include pre-resolved DNS
addresses for use by the client device 104 in opening connec-
tions and requesting content and other data.

With reference to FIG. 6, a content server 102 may transmit
a hint file to a client device 104 at (1). The transmission may

US 9,231,949 B1

11

occur over a connection established at the request of the
content server 102, as described in detail above. In some
cases, the hint file may be transmitted over a single connec-
tion established at the request of the client device 104, such as
the connection over which the client device 104 transmitted a
content request to the content server 102. For example, if the
client device 104 initiated a connection with the content
server 102 via the SPDY protocol, the content server 102 may
initiate a transfer of data to the client device 104 over that
same connection even though it was established by the client
device 104.

In some embodiments, the content server 102 may deter-
mine that a client device 104 is configured to receive and
process hint files based on data received from the client device
104, such as HTTP headers transmitted with an HTTP
request. If the content server 102 inspects the User-Agent
HTTP header and determines that the browser 140 of the
client device 104 is capable of processing and using hints,
then the content server 102 may begin inserting hints into
custom HTTP response headers, similar to the insertion of a
token into a custom HTTP request header described above.
For example, a custom Open-Connections HTTP header may
be included and assigned a value indicating the IP address,
URLSs, or other identifiers of various hosts with which the
client device 104 should open connections. A custom
Retrieve-Files HTTP header may be assigned a vale indicat-
ing specific files to retrieve. Any number of other custom
HTTP headers may be implemented. In further embodiments,
the content server 102 may embed a reference at the top of a
requested file, such as an HTML file, to retrieve the hint file
from the content server 102. In such cases, the browser 140 of
the client device can request and process an HTML file using
standard methods, and request the hint file as it encounters the
reference.

The hint analysis module 144 or some other component of
the browser 140 or client device 104 may process the received
hints at (2). Processing the hints may include determining
which domains to resolve, how many connections to open,
which order to retrieve files that will be needed, and the like.
The client device 104 can then act on the hints at (3), such as
by opening a connection with the content server 102 and
requesting a file based on the received hint, not on the
received HTML file. The client device 104 may also open
connections to third party servers 106 at (4) according to a
listing or other instructions in the hint file.

Turning now to FIG. 7, an illustrative process 700 for
generating hints at a content server 102 will be described. The
process 700 may be executed by the hint generator 124 of the
content server 102. Advantageously, the hint generator 124
may be configured to prepare a list of connections to open,
prioritized list of resources to retrieve, alternate files to
retrieve, and other actions to take in order to improve the
performance and user experience at a client device 104 with
respect to the content hosted by the content server 102.

The process 700 begins at block 702. The process 700 may
begin automatically, such as when a content server 102 is
initialized, or in response to some user or administrator event.
The process 700 may be embodied in a set of executable
program instructions and stored on a computer-readable
medium drive of the computing system with which the con-
tent server 102 is associated. When the process 700 is initi-
ated, the executable program instructions can be loaded into
memory, such as RAM, and executed by one or more proces-
sors of the computing system. In some embodiments, the
computing system may include multiple computing devices,
such as servers, and the process 700 may be executed by
multiple servers, serially or in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

12

At block 704, the content server 102 receives a request
from a client device 104. The request may be an HTTP GET
request or some other request for a content item. At decision
block 706, the content server 102 can determine whether the
client device 104 is configured to accept hints. As described
above, the content server may inspect the User-Agent HTTP
header to identify the browser 140 type and version. If the
browser 140 is configured to accept hints, such as the browser
140 with a hint analysis module 144 illustrated in FIG. 1, the
process 700 can proceed to block 708; otherwise the process
700 can terminate at block 716.

Atblock 708, the content server 102 may analyze any client
characteristics that have been transmitted to the content
server 102 or which the content server 102 otherwise has
access to. For example, the client device 104 may be config-
ured to transmit data to the content server 102 about the
current network connection of the client device 104 (e.g.:
bandwidth, latency), the display available on the client device
104 (e.g.: resolution, physical size), the computing capacity
of the client device 104 (e.g.: processor type, memory), and
other characteristics which may affect performance. The data
may be included in custom HTTP headers, communicated
with the content server 102 before or after the transmission of
an HTTP request, detected from other data commonly trans-
mitted (e.g.: IP address), detected by the content server 102 or
some other system over a series of requests from the client
device 104, etc. In some embodiments, the content server 102
may have access to a data store with profile data about a client
device 104.

The analysis of client characteristics can affect which hints
to generate and send to the client device 104. Atblock 710, the
content server 102 can generate hints for transmission to the
client device 104.

At block 712, the content server 102 can optionally estab-
lish a connection with the client device 104, as described in
detail above. The content server 102 may then use the con-
nection to transmit a file containing the hints, or a stream of
hint data, to the client device 104 at block 714. Alternatively,
the content server 102 may transmit the hints to the client
device 104 without establishing a new connection. For
example, if the content server 102 and the client device 104
have an existing SPDY connection open, the content server
102 may initiate transmission transmit hint files and data to
the client device 102 over the connection. In some embodi-
ments, the content server 102 may induce the client device
104 to request the hint file, as described above, by embedding
areference to the hint file in a file that the client device 104 has
or will request. The content server 102 may also include hints
in custom HTTP response headers sent to the client device
102. The hints may be associated with an expiration, such as
an HTTP header indicating a lifetime or expiration date or
time. Data regarding the hints may be stored by a client device
104 until they are expired, similar to the caching of other
network-accessible content.

Turning now to FIG. 8, an illustrative process 800 for
receiving and acting upon hints at a client device 104 will be
described. The process 800 may be executed by the browser
140 of the client device 104, and specific portions may be
implemented by the hint analysis module 144. Advanta-
geously, when a hint is received, the hint analysis module can
initiate actions according to the hints, such as establishing
connections and retrieving resources that the browser 140
may need in the future, thereby improving performance and
the user experience.

The process 800 begins at block 802. The process 800 may
begin automatically, such as in response to initiation, by a
user of the client device 104, of a request for a content object

US 9,231,949 B1

13

from a content server 102. The process 800 may be embodied
in a set of executable program instructions and stored on a
computer-readable medium drive of the client device 104.
When the process 800 is initiated, the executable program
instructions can be loaded into memory, such as RAM, and
executed by one or more processors of the client device 104.

At block 804, the browser 140 may transmit a request for
content to a content server 102. The request may include
information about the current operating environment of the
browser 140, such as network conditions, available comput-
ing resources, and the like. Such information may be included
in custom HTTP headers, transmitted via an application pro-
gramming interface (API) exposed by the content server 102,
or through some other method. In some embodiments, the
browser 140 or some other component of the client device 104
may be configured to store previously received hints, similar
to caching content items. In such cases, the browser 140 can
determine whether a hint file or other hint data associated with
the requested content or content source has been previously
received. If'so, the hints may be processed and acted upon, as
described below.

At block 806, the browser 140 may receive one or more
hints from the content server 102. The hint analysis module
144 may analyze the hints to determine which actions, if any,
to take based upon the hints. As described above, the hints
may include a prioritized list of resources associated with the
originally requested content such that the browser 140 may
initiate retrieval of the resources prior to determining that they
are needed for full processing or rendering of the originally
requested content. Other hints may include alternative
resources 1o retrieve, connections to proactively open, etc.

At block 808, the browser 140 may open various connec-
tions according to the hints. The connections may be opened
to request specific resources, as specified in the hints. In some
embodiments, connections may be opened in anticipation of
requesting content in the future. For example, a particular
content item may include embedded references to a number
of dynamically determined objects hosted by third party serv-
ers 106, such as CDN servers. The hint file may indicate that
the browser 140 should proactively establish connections to
the CDN servers so that once the dynamically determined
objects are identified, the browser 140 may quickly retrieve
the objects without waiting to establish a connection.

Atblock 810, the browser 140 may retrieve files and other
resources as indicated in the hint file. Files may be retrieved in
a prioritized order, in parallel, etc. For example, the browser
140 may be downloading the originally requested HTML file.
That download may only be consuming 60% of the band-
width available to the browser 140. The browser 140 may
proceed to utilize the remaining 40% of available bandwidth
to download other resources associated with the requested
content, according the hint file. The associated resources may
be retrieved before the browser 140 finishes downloading the
HTML file and is able to otherwise determine that the addi-
tional resources are to be retrieved. The hint file may also
identify one or more substitute resources to retrieve based on
the characteristic data sent to the content server 102 at block
804. For example, the substitute resources may be low reso-
Iution images or videos for mobile browsers (e.g.: browsers
operating on a mobile phone).

Atblock 812, the browser 140 may transmit feedback to the
content server 102. The feedback may be similar to the char-
acteristic data that was transmitted with the original request.
However, feedback data may inform the content server 102
about operating conditions with respect to the content from
the content server 102, rather than before the content from the
content server 102 is received.

10

15

20

25

30

35

40

45

50

55

60

65

14

All of the client-side functionality described in this speci-
fication may be embodied in executable code of a browser
program that supports HTTP, HTML, and other World Wide
Web protocols and standards. For example, the disclosed
features may be incorporated into a mobile device browser
140 that runs on a tablet or mobile phone that retrieves content
over a wireless data network. In such mobile-device embodi-
ments in which wireless bandwidth limitations can be signifi-
cant, the ability for content servers 102 to push content and/or
send hints to the mobile device 104 can significantly improve
user-perceived performance. As described above, additional
performance benefits can be achieved by designing the
mobile browser 140 to notify servers of the mobile device’s
attributes (e.g., relatively small form factor, touch screen,
etc.), and by designing the associated content server compo-
nents 122, 124 to consider these attributes in selecting content
and/or hints to send to the mobile device 104. The browser
may, in some embodiments, be configurable by the user to
enable and disable server-initiated connections and/or pre-
fetching based on server-supplied hints.

Terminology

Depending on the embodiment, certain acts, events, or
functions of any of the processes or algorithms described
herein can be performed in a different sequence, can be
added, merged, or left out altogether (e.g., not all described
operations or events are necessary for the practice of the
algorithm). Moreover, in certain embodiments, operations or
events can be performed concurrently, e.g., through multi-
threaded processing, interrupt processing, or multiple proces-
sors or processor cores or on other parallel architectures,
rather than sequentially.

The various illustrative logical blocks, modules, routines,
and algorithm steps described in connection with the embodi-
ments disclosed herein can be implemented as electronic
hardware, computer software, or combinations of both. To
clearly illustrate this interchangeability of hardware and soft-
ware, various illustrative components, blocks, modules, and
steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application
and design constraints imposed on the overall system. The
described functionality can be implemented in varying ways
for each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the disclosure.

The steps of a method, process, routine, or algorithm
described in connection with the embodiments disclosed
herein can be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the
two. A software module can reside in RAM memory, flash
memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of a non-transitory computer-readable stor-
age medium. An exemplary storage medium can be coupled
to the processor such that the processor can read information
from, and write information to, the storage medium. In the
alternative, the storage medium can be integral to the proces-
sor. The processor and the storage medium can reside in an
ASIC. The ASIC can reside in a user terminal. In the alterna-
tive, the processor and the storage medium can reside as
discrete components in a user terminal.

Conditional language used herein, such as, among others,
“can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus,

US 9,231,949 B1

15

such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or steps are included or are to be performed in any par-
ticular embodiment. The terms “comprising,” “including,”
“having,” and the like are synonymous and are used inclu-
sively, in an open-ended fashion, and do not exclude addi-
tional elements, features, acts, operations, and so forth. Also,
the term “or” is used in its inclusive sense (and not in its
exclusive sense) so that when used, for example, to connect a
list of elements, the term “or” means one, some, or all of the
elements in the list.

Conjunctive language such as the phrase “at least one of X,
Y and Z,” unless specifically stated otherwise, is to be under-
stood with the context as used in general to convey that an
item, term, etc. may be either X, Y, or Z, or a combination
thereof. Thus, such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of X, at least one of Y and at least one of Z to each be
present.

While the above detailed description has shown, described,
and pointed out novel features as applied to various embodi-
ments, it can be understood that various omissions, substitu-
tions, and changes in the form and details of the devices or
algorithms illustrated can be made without departing from the
spirit of the disclosure. As can be recognized, certain embodi-
ments of the inventions described herein can be embodied
within a form that does not provide all of the features and
benefits set forth herein, as some features can be used or
practiced separately from others. The scope of certain inven-
tions disclosed herein is indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:

1. A system for delivering content over a network, the
system comprising:

acontent server that hosts a content page, the content server

comprising a processor and a memory; and

a module comprising executable instructions stored in the

memory, wherein the content server is programmed, via

the module, to receive, from a client device via a first

network connection between the content server and the

client device, a request for the content page, the request

comprising an authentication token, wherein the content

page includes a file having a reference to an embedded

resource, said content server additionally programmed

via the module to respond to the request for the content

page by at least:

transmitting the file to the client device over the first
network connection;

identifying the embedded resource;

generating, and transmitting to the client device, a
request to establish a second network connection
between the content server and the client device, the
request to establish the second network connection
comprising the authentication token or data derived
from the authentication token; and

in response to establishment of the second network con-

nection, transmitting the embedded resource to the cli-
ent device via the second network connection;

said module thereby enabling the content server to proac-

tively deliver the embedded resource to the client device
without receiving a request from the client device for the
embedded resource.

10

15

20

25

30

35

40

45

50

55

60

16

2. The system of claim 1, wherein the second network
connection comprises a Hypertext Transfer Protocol (HTTP)
connection.

3. The system of claim 1, wherein the embedded resource
is identified based at least in part on the first request.

4. The system of claim 1, wherein the one or more proces-
sors are further configured to:

identify a second embedded resource of the content page,

the second embedded resource hosted by a third party
server; and

transmit the authentication token to the third party server.

5. The system of claim 1, wherein the one or more proces-
sors are further configured to:

identify a second embedded resource of the content page;

determine a preferred sequence in which to transmit the

embedded resource and the second embedded resource;
and

further in response to the establishment of the second net-

work connection, transmit the second embedded
resource to the client device via the second network
connection, wherein the embedded resource and the sec-
ond embedded resource are transmitted sequentially
according to the preferred sequence.

6. The system of claim 5, wherein the preferred sequence is
determined based at least in part on a characteristic of each of
the embedded resource and second embedded resource.

7. The system of claim 6, wherein the characteristic com-
prises one of file size or display position.

8. The system of claim 1, wherein the request comprises a
Hypertext Transfer Protocol (HTTP) request, and wherein the
authentication token is received in an HTTP header.

9. A computer-implemented method for delivering content
over a network, the computer-implemented method compris-
ing:

by a content server comprising a processor and memory:

receiving, from a client device via a first network connec-

tion between the client device and the content server, a
request for a first content item hosted by the content
server, the request comprising an authentication token,
wherein the first content item comprises a file containing
a reference to a second content item that is an embedded
resource of the first content item;

transmitting the file to the client device over the first net-

work connection in response to the request;

identifying the second content item based at leastin part on

the request, wherein the second content item is different
than the first content item;

establishing a second network connection with the client

device, wherein establishing the second network con-
nection comprises transmitting, from the content server
to the client device, a request to establish the second
network connection between the content server and the
client device, the request to establish the second network
connection comprising data associated with the authen-
tication token; and

in response to establishment of the second network con-

nection between the content server and the client device,
transmitting the second content item to the client device
via the second network connection, said transmitting not
being responsive to a request from the client device for
the second content item.

10. The computer-implemented method of claim 9, further
comprising, by the content server:

identifying a third content item based at least in part on the

request for the first content item, the third content item
hosted by a third party server; and

US 9,231,949 B1

17

transmitting data associated with the authentication token

to the third party server.

11. The computer-implemented method of claim 9, further
comprising:

requesting, from the client device, version data regarding a

copy of the second content item stored on the client
device;

receiving the version data; and

determining, based at least in part on the version data,

whether to transmit the second content item to the client
device.

12. The computer-implemented method of claim 9,
wherein the data associated with the authentication token
comprises a digital signature of the content server, the digital
signature comprising encrypted data associated with the
authentication token.

13. The computer-implemented method of claim 9, further
comprising, by the content server:

identifying a third content item, wherein the third content

item is different than both the first content item and the
second content item;
determining a preferred sequence in which to transmit the
second content item and the third content item; and

further in response to the establishment of the second net-
work connection, transmitting the third content item to
the client device via the second network connection,
wherein the second content item and the third content
item are transmitted sequentially according to the pre-
ferred sequence.

14. The computer-implemented method of claim 9,
wherein the second content item is an embedded resource of
the first content item.

15. The computer-implemented method of claim 9, further
comprising, by the content server:

identifying a third content item, wherein the third content

item is different than both the first content item and the
second content item; and

transmitting, to the client device, a request to establish a

third network connection, the request comprising data
associated with the authentication token.

16. The computer-implemented method of claim 9,
wherein the request comprises a Hypertext Transfer Protocol
(HTTP) request, and wherein the authentication token is
received in an HTTP header.

17. The computer-implemented method of claim 9,
wherein the first content item comprises a Hypertext Markup
Language (HTML) file, and wherein a reference to the second
content item is embedded within the HTML file.

18. A non-transitory computer storage medium which
stores a browser component comprising executable code that
is executed on a client computing device to perform a process
comprising:

transmitting, via a first network connection between the

client computing device and a content server, a first
request for a first content item hosted by the content
server, the first request comprising an authentication
token;

receiving the first content item from the content server over

the first network connection;

processing a second request to establish a second network

connection with the content server, said second request
received from the content server, the second request
comprising authentication data;

18

determining whether to establish the second network con-
nection with the content server based at least in part on
whether the authentication data corresponds to the
authentication token; and
5 receiving, from the content server, a second content item
via the second network connection between the client
computing device and the content server, said second
content item being an item not requested by the client
computing device, wherein the second content item is an
embedded resource of the first content item.

19. The non-transitory computer storage medium of claim
18, wherein the authentication data comprises the token.

20. The non-transitory computer storage medium of claim
18, wherein the process further comprises:

receiving, from athird party server, a third request to estab-

lish a third connection between the third party server and
the client computing device, the third request compris-
ing the authentication token or data derived from the
authentication token;

determining whether to establish the third network connec-

tion based at least in part on the authentication token or
data derived from the authentication token; and

in response to determining to establish the third network

connection, receiving a third content item from the third
party server via the third network connection, said third
content item being an item not requested by the client
computing device.

21. The non-transitory computer storage medium of claim
18, wherein the process further comprises receiving, from the
content server, a third content item via the second network
connection.

22. The non-transitory computer storage medium of claim
18, wherein the process further comprises:

receiving, from the content server, a third request for ver-

sion information regarding a copy of the second content
item stored locally; and

transmitting the version information to the content server.

23. The non-transitory computer storage medium of claim
18, wherein the process further comprises generating the
authentication token, wherein the authentication token is
based at least in part on identity data associated with the
content server.

24. The non-transitory computer storage medium of claim
18, wherein the process further comprises generating the
authentication token, wherein the authentication token is
associated with an expiration date.

25. The non-transitory computer storage medium of claim
18, wherein the process further comprises generating the
authentication token, wherein the authentication token com-
prises encrypted data.

26. The non-transitory computer storage medium of claim
18, wherein the authentication data comprises data associated
with the authentication token.

27. The non-transitory computer storage medium of claim
18, wherein the first request comprises a Hypertext Transfer
Protocol (HTTP) request, and wherein the authentication
token is transmitted in an HTTP header.

28. The non-transitory computer storage medium of claim
18 wherein the client computing device comprises a mobile
device, and wherein the browser component comprises a
mobile browser component.

30

40

45

#* #* #* #* #*

